314 research outputs found

    Implementation of a production Ada project: The GRODY study

    Get PDF
    The use of the Ada language and design methodologies that encourage full use of its capabilities have a strong impact on all phases of the software development project life cycle. At the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC), the Software Engineering Laboratory (SEL) conducted an experiment in parallel development of two flight dynamics systems in FORTRAN and Ada. The differences observed during the implementation, unit testing, and integration phases of the two projects are described and the lessons learned during the implementation phase of the Ada development are outlined. Included are recommendations for future Ada development projects

    The Swansea Cyber Clinic Project: A Stakeholder Report

    Get PDF
    A report aimed at law enforcement, victim support and other practitioners, summarising the results of the MASI-funded Swansea Cyber Clinic pilot project, undertaken between August 2021 and July 2022

    Defect Categorization: Making Use of a Decade of Widely Varying Historical Data

    Get PDF
    This paper describes our experience in aggregating a number of historical datasets containing inspection defect data using different categorizing schemes. Our goal was to make use of the historical data by creating models to guide future development projects. We describe our approach to reconciling the different choices used in the historical datasets to categorize defects, and the challenges we faced. We also present a set of recommendations for others involved in classifying defects

    Early antenatal prediction of gestational diabetes in obese women: development of prediction tools for targeted intervention

    Get PDF
    All obese women are categorised as being of equally high risk of gestational diabetes (GDM) whereas the majority do not develop the disorder. Lifestyle and pharmacological interventions in unselected obese pregnant women have been unsuccessful in preventing GDM. Our aim was to develop a prediction tool for early identification of obese women at high risk of GDM to facilitate targeted interventions in those most likely to benefit. Clinical and anthropometric data and non-fasting blood samples were obtained at 15+0–18+6 weeks’ gestation in 1303 obese pregnant women from UPBEAT, a randomised controlled trial of a behavioural intervention. Twenty one candidate biomarkers associated with insulin resistance, and a targeted nuclear magnetic resonance (NMR) metabolome were measured. Prediction models were constructed using stepwise logistic regression. Twenty six percent of women (n = 337) developed GDM (International Association of Diabetes and Pregnancy Study Groups criteria). A model based on clinical and anthropometric variables (age, previous GDM, family history of type 2 diabetes, systolic blood pressure, sum of skinfold thicknesses, waist:height and neck:thigh ratios) provided an area under the curve of 0.71 (95%CI 0.68–0.74). This increased to 0.77 (95%CI 0.73–0.80) with addition of candidate biomarkers (random glucose, haemoglobin A1c (HbA1c), fructosamine, adiponectin, sex hormone binding globulin, triglycerides), but was not improved by addition of NMR metabolites (0.77; 95%CI 0.74–0.81). Clinically translatable models for GDM prediction including readily measurable variables e.g. mid-arm circumference, age, systolic blood pressure, HbA1c and adiponectin are described. Using a ≥35% risk threshold, all models identified a group of high risk obese women of whom approximately 50% (positive predictive value) later developed GDM, with a negative predictive value of 80%. Tools for early pregnancy identification of obese women at risk of GDM are described which could enable targeted interventions for GDM prevention in women who will benefit the most

    Evaluating Heuristics for Planning Effective and Efficient Inspections

    Get PDF
    A significant body of knowledge concerning software inspection practice indicates that the value of inspections varies widely both within and across organizations. Inspection effectiveness and efficiency can be measured in numerous ways, and may be affected by a variety of factors such as Inspection planning, the type of software, the developing organization, and many others. In the early 1990's, NASA formulated heuristics for inspection planning based on best practices and early NASA inspection data. Over the intervening years, the body of data from NASA inspections has grown. This paper describes a multi-faceted exploratory analysis performed on this data to elicit lessons learned in general about conducting inspections and to recommend improvements to the existing heuristics. The contributions of our results include support for modifying some of the original inspection heuristics (e.g. Increasing the recommended page rate), evidence that Inspection planners must choose between efficiency and effectiveness, as a good tradeoff between them may not exist, and Identification of small subsets of inspections for which new inspection heuristics are needed. Most Importantly, this work illustrates the value of collecting rich data on software Inspections, and using it to gain insight into, and Improve, inspection practice

    Situational analysis of teaching and learning of medicine and nursing students at Makerere University College of Health Sciences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Makerere University College of Health Sciences (MakCHS) in Uganda is undergoing a major reform to become a more influential force in society. It is important that its medicine and nursing graduates are equipped to best address the priority health needs of the Ugandan population, as outlined in the government’s Health Sector Strategic Plan (HSSP). The assessment identifies critical gaps in the core competencies of the MakCHS medicine and nursing and ways to overcome them in order to achieve HSSP goals.</p> <p>Methods</p> <p>Documents from the Uganda Ministry of Health were reviewed, and medicine and nursing curricula were analyzed. Nineteen key informant interviews (KII) and seven focus group discussions (FGD) with stakeholders were conducted. The data were manually analyzed for emerging themes and sub-themes. The study team subsequently used the checklists to create matrices summarizing the findings from the KIIs, FGDs, and curricula analysis. Validation of findings was done by triangulating information from the different data collection methods.</p> <p>Results</p> <p>The core competencies that medicine and nursing students are expected to achieve by the end of their education were outlined for both programs. The curricula are in the process of reform towards competency-based education, and on the surface, are well aligned with the strategic needs of the country. But implementation is inadequate, and can be changed:</p> <p>• Learning objectives need to be more applicable to achieving competencies.</p> <p>• Learning experiences need to be more relevant for competencies and setting in which students will work after graduation (i.e. not just clinical care in a tertiary care facility).</p> <p>• Student evaluation needs to be better designed for assessing these competencies.</p> <p>Conclusion</p> <p>MakCHS has made a significant attempt to produce relevant, competent nursing and medicine graduates to meet the community needs. Ways to make them more effective though deliberate efforts to apply a competency-based education are possible.</p

    The Grizzly, February 2, 2012

    Get PDF
    Birk Launches Graphic Novel at UC • Myrin Welcomes New Library Intern • Resumania Preps Students for Job, Internship Fair • Organic Farm Names New Student Director • Ursinus Introduces Zumba Class for Students • Jablonowski Gains Experience at Academy of Natural Sciences • St. Christopher\u27s Offers Volunteer Opportunity for UC Students • Opinion: SOPA had Right Idea, but was Misguided; Major and Minor Expo Offers Great Information • Senior Spotlight: Sean Whelan, Football • Buckley\u27s Bears Battle Through Adversity • Ursinus Community Remembers Daniel Gloverhttps://digitalcommons.ursinus.edu/grizzlynews/1850/thumbnail.jp

    A Simplified Water Accounting Procedure to Assess Climate Change Impact on Water Resources for Agriculture across Different European River Basins

    Get PDF
    [EN] European agriculture and water policies require accurate information on climate change impacts on available water resources. Water accounting, that is a standardized documentation of data on water resources, is a useful tool to provide this information. Pan-European data on climate impacts do not recognize local anthropogenic interventions in the water cycle. Most European river basins have a specific toolset that is understood and used by local experts and stakeholders. However, these local tools are not versatile. Thus, there is a need for a common approach that can be understood by multi-fold users to quantify impact indicators based on local data and that can be used to synthesize information at the European level. Then, policies can be designed with the confidence that underlying data are backed-up by local context and expert knowledge. This work presents a simplified water accounting framework that allows for a standardized examination of climate impacts on water resource availability and use across multiple basins. The framework is applied to five different river basins across Europe. Several indicators are extracted that explicitly describe green water fluxes versus blue water fluxes and impacts on agriculture. The examples show that a simplified water accounting framework can be used to synthesize basin-level information on climate change impacts which can support policymaking on climate adaptation, water resources and agriculture.This research was funded by Horizon 2020 IMPREX project, grant number 641811Hunink, J.; Simons, G.; Suárez-Almiñana, S.; Solera Solera, A.; Andreu Álvarez, J.; Giuliani, M.; Zamberletti, P.... (2019). A Simplified Water Accounting Procedure to Assess Climate Change Impact on Water Resources for Agriculture across Different European River Basins. Water. 11(10):1-29. https://doi.org/10.3390/w11101976S1291110Jacob, D., Kotova, L., Teichmann, C., Sobolowski, S. P., Vautard, R., Donnelly, C., … van Vliet, M. T. H. (2018). Climate Impacts in Europe Under +1.5°C Global Warming. Earth’s Future, 6(2), 264-285. doi:10.1002/2017ef000710Koutroulis, A. G., Grillakis, M. G., Daliakopoulos, I. N., Tsanis, I. K., & Jacob, D. (2016). Cross sectoral impacts on water availability at +2 °C and +3 °C for east Mediterranean island states: The case of Crete. Journal of Hydrology, 532, 16-28. doi:10.1016/j.jhydrol.2015.11.015Dezsi, Ş., Mîndrescu, M., Petrea, D., Rai, P. K., Hamann, A., & Nistor, M.-M. (2018). High-resolution projections of evapotranspiration and water availability for Europe under climate change. International Journal of Climatology, 38(10), 3832-3841. doi:10.1002/joc.5537Forzieri, G., Feyen, L., Russo, S., Vousdoukas, M., Alfieri, L., Outten, S., … Cid, A. (2016). Multi-hazard assessment in Europe under climate change. Climatic Change, 137(1-2), 105-119. doi:10.1007/s10584-016-1661-xRuosteenoja, K., Markkanen, T., Venäläinen, A., Räisänen, P., & Peltola, H. (2017). Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Climate Dynamics, 50(3-4), 1177-1192. doi:10.1007/s00382-017-3671-4Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acacio, V., … Van Lanen, H. A. J. (2015). Impacts of European drought events: insights from an international database of text-based reports. doi:10.5194/nhessd-3-5453-2015Van Lanen, H. A. J., Laaha, G., Kingston, D. G., Gauster, T., Ionita, M., Vidal, J., … Van Loon, A. F. (2016). Hydrology needed to manage droughts: the 2015 European case. Hydrological Processes, 30(17), 3097-3104. doi:10.1002/hyp.10838Moore, F. C., & Lobell, D. B. (2014). Adaptation potential of European agriculture in response to climate change. Nature Climate Change, 4(7), 610-614. doi:10.1038/nclimate2228Iglesias, A., & Garrote, L. (2015). Adaptation strategies for agricultural water management under climate change in Europe. Agricultural Water Management, 155, 113-124. doi:10.1016/j.agwat.2015.03.014Llop, M., & Ponce-Alifonso, X. (2016). Water and Agriculture in a Mediterranean Region: The Search for a Sustainable Water Policy Strategy. Water, 8(2), 66. doi:10.3390/w8020066Escribano Francés, G., Quevauviller, P., San Martín González, E., & Vargas Amelin, E. (2017). Climate change policy and water resources in the EU and Spain. A closer look into the Water Framework Directive. Environmental Science & Policy, 69, 1-12. doi:10.1016/j.envsci.2016.12.006Bastiaanssen, W. G. M., & Steduto, P. (2017). The water productivity score (WPS) at global and regional level: Methodology and first results from remote sensing measurements of wheat, rice and maize. Science of The Total Environment, 575, 595-611. doi:10.1016/j.scitotenv.2016.09.032Simons, G. W. H. (Gijs), Bastiaanssen, W. G. M. (Wim), & Immerzeel, W. W. (Walter). (2015). Water reuse in river basins with multiple users: A literature review. Journal of Hydrology, 522, 558-571. doi:10.1016/j.jhydrol.2015.01.016Lavrnić, S., Zapater-Pereyra, M., & Mancini, M. L. (2017). Water Scarcity and Wastewater Reuse Standards in Southern Europe: Focus on Agriculture. Water, Air, & Soil Pollution, 228(7). doi:10.1007/s11270-017-3425-2Ricart, S., & Rico, A. M. (2019). Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor. Agricultural Water Management, 217, 426-439. doi:10.1016/j.agwat.2019.03.017Hoekstra, A., Chapagain, A., & van Oel, P. (2017). Advancing Water Footprint Assessment Research: Challenges in Monitoring Progress towards Sustainable Development Goal 6. Water, 9(6), 438. doi:10.3390/w9060438Roudier, P., Andersson, J. C. M., Donnelly, C., Feyen, L., Greuell, W., & Ludwig, F. (2015). Projections of future floods and hydrological droughts in Europe under a +2°C global warming. Climatic Change, 135(2), 341-355. doi:10.1007/s10584-015-1570-4Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., … Marx, A. (2018). Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate Change, 8(5), 421-426. doi:10.1038/s41558-018-0138-5Panagopoulos, Y., Stefanidis, K., Faneca Sanchez, M., Sperna Weiland, F., Van Beek, R., Venohr, M., … Birk, S. (2019). Pan-European Calculation of Hydrologic Stress Metrics in Rivers: A First Assessment with Potential Connections to Ecological Status. Water, 11(4), 703. doi:10.3390/w11040703Macknick, J., Newmark, R., Heath, G., & Hallett, K. C. (2012). Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environmental Research Letters, 7(4), 045802. doi:10.1088/1748-9326/7/4/045802Koutroulis, A. G., Papadimitriou, L. V., Grillakis, M. G., Tsanis, I. K., Wyser, K., & Betts, R. A. (2018). Freshwater vulnerability under high end climate change. A pan-European assessment. Science of The Total Environment, 613-614, 271-286. doi:10.1016/j.scitotenv.2017.09.074Lobanova, A., Liersch, S., Nunes, J. P., Didovets, I., Stagl, J., Huang, S., … Krysanova, V. (2018). Hydrological impacts of moderate and high-end climate change across European river basins. Journal of Hydrology: Regional Studies, 18, 15-30. doi:10.1016/j.ejrh.2018.05.003Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., … Wood, E. F. (2017). Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrology and Earth System Sciences, 21(12), 6201-6217. doi:10.5194/hess-21-6201-2017Naz, B. S., Kurtz, W., Montzka, C., Sharples, W., Goergen, K., Keune, J., … Kollet, S. (2019). Improving soil moisture and runoff simulations at 3 km over Europe using land surface data assimilation. Hydrology and Earth System Sciences, 23(1), 277-301. doi:10.5194/hess-23-277-2019Haro, D., Solera, A., Paredes, J., & Andreu, J. (2014). Methodology for Drought Risk Assessment in Within-year Regulated Reservoir Systems. Application to the Orbigo River System (Spain). Water Resources Management, 28(11), 3801-3814. doi:10.1007/s11269-014-0710-3Zaniolo, M., Giuliani, M., Castelletti, A. F., & Pulido-Velazquez, M. (2018). Automatic design of basin-specific drought indexes for highly regulated water systems. Hydrology and Earth System Sciences, 22(4), 2409-2424. doi:10.5194/hess-22-2409-2018Koutroulis, A. G., Tsanis, I. K., Daliakopoulos, I. N., & Jacob, D. (2013). Impact of climate change on water resources status: A case study for Crete Island, Greece. Journal of Hydrology, 479, 146-158. doi:10.1016/j.jhydrol.2012.11.055Vargas-Amelin, E., & Pindado, P. (2014). The challenge of climate change in Spain: Water resources, agriculture and land. Journal of Hydrology, 518, 243-249. doi:10.1016/j.jhydrol.2013.11.035Giuliani, M., Li, Y., Castelletti, A., & Gandolfi, C. (2016). A coupled human-natural systems analysis of irrigated agriculture under changing climate. Water Resources Research, 52(9), 6928-6947. doi:10.1002/2016wr019363Giuliani, M., & Castelletti, A. (2016). Is robustness really robust? How different definitions of robustness impact decision-making under climate change. Climatic Change, 135(3-4), 409-424. doi:10.1007/s10584-015-1586-9Grindlay, A. L., Zamorano, M., Rodríguez, M. I., Molero, E., & Urrea, M. A. (2011). Implementation of the European Water Framework Directive: Integration of hydrological and regional planning at the Segura River Basin, southeast Spain. Land Use Policy, 28(1), 242-256. doi:10.1016/j.landusepol.2010.06.005Quevauviller, P., Barceló, D., Beniston, M., Djordjevic, S., Harding, R. J., Iglesias, A., … Werner, M. (2012). Integration of research advances in modelling and monitoring in support of WFD river basin management planning in the context of climate change. Science of The Total Environment, 440, 167-177. doi:10.1016/j.scitotenv.2012.07.055Edens, B., & Graveland, C. (2014). Experimental valuation of Dutch water resources according to SNA and SEEA. Water Resources and Economics, 7, 66-81. doi:10.1016/j.wre.2014.10.003Pedro-Monzonís, M., Jiménez-Fernández, P., Solera, A., & Jiménez-Gavilán, P. (2016). The use of AQUATOOL DSS applied to the System of Environmental-Economic Accounting for Water (SEEAW). Journal of Hydrology, 533, 1-14. doi:10.1016/j.jhydrol.2015.11.034Gouveia, C. M., Trigo, R. M., Beguería, S., & Vicente-Serrano, S. M. (2017). Drought impacts on vegetation activity in the Mediterranean region: An assessment using remote sensing data and multi-scale drought indicators. Global and Planetary Change, 151, 15-27. doi:10.1016/j.gloplacha.2016.06.011Borrego-Marín, M., Gutiérrez-Martín, C., & Berbel, J. (2016). Water Productivity under Drought Conditions Estimated Using SEEA-Water. Water, 8(4), 138. doi:10.3390/w8040138Vardon, M., Lenzen, M., Peevor, S., & Creaser, M. (2007). Water accounting in Australia. Ecological Economics, 61(4), 650-659. doi:10.1016/j.ecolecon.2006.07.033Pedro-Monzonís, M., del Longo, M., Solera, A., Pecora, S., & Andreu, J. (2016). Water Accounting in the Po River Basin Applied to Climate Change Scenarios. Procedia Engineering, 162, 246-253. doi:10.1016/j.proeng.2016.11.051Momblanch, A., Andreu, J., Paredes-Arquiola, J., Solera, A., & Pedro-Monzonís, M. (2014). Adapting water accounting for integrated water resource management. The Júcar Water Resource System (Spain). Journal of Hydrology, 519, 3369-3385. doi:10.1016/j.jhydrol.2014.10.002Karimi, P., Bastiaanssen, W. G. M., & Molden, D. (2012). Water Accounting Plus (WA+) – a water accounting procedure for complex river basins based on satellite measurements. doi:10.5194/hessd-9-12879-2012Karimi, P., Bastiaanssen, W. G. M., Molden, D., & Cheema, M. J. M. (2013). Basin-wide water accounting based on remote sensing data: an application for the Indus Basin. Hydrology and Earth System Sciences, 17(7), 2473-2486. doi:10.5194/hess-17-2473-2013Orth, R., & Destouni, G. (2018). Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nature Communications, 9(1). doi:10.1038/s41467-018-06013-7Van den Hurk, B., Hirschi, M., Schär, C., Lenderink, G., van Meijgaard, E., van Ulden, A., … Jones, R. (2005). Soil Control on Runoff Response to Climate Change in Regional Climate Model Simulations. Journal of Climate, 18(17), 3536-3551. doi:10.1175/jcli3471.1Bergström, S., Carlsson, B., Gardelin, M., Lindström, G., Pettersson, A., & Rummukainen, M. (2001). Climate change impacts on runoff in Sweden-assessments by global climate models, dynamical downscaling and hydrological modelling. Climate Research, 16, 101-112. doi:10.3354/cr016101Arnell, N. W. (1999). The effect of climate change on hydrological regimes in Europe: a continental perspective. Global Environmental Change, 9(1), 5-23. doi:10.1016/s0959-3780(98)00015-6Teuling, A. J., Van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubinet, M., Heinesch, B., … Spank, U. (2013). Evapotranspiration amplifies European summer drought. Geophysical Research Letters, 40(10), 2071-2075. doi:10.1002/grl.50495Destouni, G., & Prieto, C. (2018). Robust Assessment of Uncertain Freshwater Changes: The Case of Greece with Large Irrigation—and Climate-Driven Runoff Decrease. Water, 10(11), 1645. doi:10.3390/w10111645Suárez-Almiñana, S., Pedro-Monzonís, M., Paredes-Arquiola, J., Andreu, J., & Solera, A. (2017). Linking Pan-European data to the local scale for decision making for global change and water scarcity within water resources planning and management. Science of The Total Environment, 603-604, 126-139. doi:10.1016/j.scitotenv.2017.05.259Huang, Z., Hejazi, M., Tang, Q., Vernon, C. R., Liu, Y., Chen, M., & Calvin, K. (2019). Global agricultural green and blue water consumption under future climate and land use changes. Journal of Hydrology, 574, 242-256. doi:10.1016/j.jhydrol.2019.04.046Kahil, M. T., Connor, J. D., & Albiac, J. (2015). Efficient water management policies for irrigation adaptation to climate change in Southern Europe. Ecological Economics, 120, 226-233. doi:10.1016/j.ecolecon.2015.11.004Velasco-Muñoz, J., Aznar-Sánchez, J., Belmonte-Ureña, L., & López-Serrano, M. (2018). Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis. Water, 10(4), 377. doi:10.3390/w10040377Berbel, J., & Mateos, L. (2014). Does investment in irrigation technology necessarily generate rebound effects? A simulation analysis based on an agro-economic model. Agricultural Systems, 128, 25-34. doi:10.1016/j.agsy.2014.04.002Pedro-Monzonís, M., Ferrer, J., Solera, A., Estrela, T., & Paredes-Arquiola, J. (2014). Water Accounts and Water Stress Indexes in the European Context of Water Planning: The Jucar River Basin. Procedia Engineering, 89, 1470-1477. doi:10.1016/j.proeng.2014.11.431Vanham, D., Hoekstra, A. Y., Wada, Y., Bouraoui, F., de Roo, A., Mekonnen, M. M., … Bidoglio, G. (2018). Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 «Level of water stress». Science of The Total Environment, 613-614, 218-232. doi:10.1016/j.scitotenv.2017.09.056Liu, J., Yang, H., Gosling, S. N., Kummu, M., Flörke, M., Pfister, S., … Oki, T. (2017). Water scarcity assessments in the past, present, and future. Earth’s Future, 5(6), 545-559. doi:10.1002/2016ef000518Wada, Y., van Beek, L. P. H., Viviroli, D., Dürr, H. H., Weingartner, R., & Bierkens, M. F. P. (2011). Global monthly water stress: 2. Water demand and severity of water stress. Water Resources Research, 47(7). doi:10.1029/2010wr009792Eekhout, J. P. C., Hunink, J. E., Terink, W., & de Vente, J. (2018). Why increased extreme precipitation under climate change negatively affects water security. Hydrology and Earth System Sciences, 22(11), 5935-5946. doi:10.5194/hess-22-5935-2018Pellicer-Martínez, F., & Martínez-Paz, J. M. (2018). Climate change effects on the hydrology of the headwaters of the Tagus River: implications for the management of the Tagus–Segura transfer. Hydrology and Earth System Sciences, 22(12), 6473-6491. doi:10.5194/hess-22-6473-2018Navarro, T. (2018). Water reuse and desalination in Spain – challenges and opportunities. Journal of Water Reuse and Desalination, 8(2), 153-168. doi:10.2166/wrd.2018.043García-Rubio, M. A., & Guardiola, J. (2012). Desalination in Spain: A Growing Alternative for Water Supply. International Journal of Water Resources Development, 28(1), 171-186. doi:10.1080/07900627.2012.642245Andreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-
    corecore